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1. What is Machine Learning

2. Machine Learning Paradigms

3. Loss Functions

Recap: week 1

4. Optimization Methods



Machine Learning Pipeline

setup the input setup the optimiser setup the loss

regularization makes decision 
region smoother

landscape of a loss 
function, it varies w.r.t. 
data, the function itself
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Model？



Deep Neural Networks

https://www.asimovinstitute.org/neural-network-zoo/; https://developer.ibm.com/articles/cc-machine-learning-deep-learning-architectures/



Feed-Forward Neural Networks
Feed-Forward Neural Networks (FNN)

Fully Connected Neural Networks (FCN)
Multilayer Perceptron (MLP)

• The simplest neural network
• Fully-connected between layers
• For data that has NO temporal or spatial order

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Convolutional Neural Networks

• For images or data with spatial order
• Can stack up to >100 layers

http://cs231n.stanford.edu/

Neurons in 3 dimensionsNeurons in one flat layer

http://cs231n.stanford.edu/


Recurrent Neural Networks

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Traditional RNN



Transformers

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017)

Transformer: a new type of DNNs based on attention

Encoder Decoder



Self-Attention Explained

https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a



CNN Explained

• Learns different levels of representations

http://cs231n.stanford.edu/

A brief history of CNNs:
• LeNet, 1990s
• AlexNet, 2012
• ZF Net, 2013
• GoogLeNet, 2014
• VGGNet, 2014
• ResNet, 2015
• Inception V4, 2016
• ResNeXt, 2017
• ViT, 2021

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021

http://cs231n.stanford.edu/


Explainable AI

深度学习可解释性

学习机理 推理机理 泛化机理 认知机理 鲁棒性
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我们想要弄清楚下列问题：
• DNN是怎么学习的、学到了什么、靠什么泛化、在什么情况下行又在什么情况下不行？
• 深度学习是否是真正的智能，与人类智能比谁更高级，它的未来是什么？ 
• 是否存在大一统的理论，不但能解释而且能提高？



Methodological Principles

uVisualization

uAblation

uContrast

• Model

• Component

• Layer

• Operation

• Neuron

• Superclass

• Class

• Training/Test set

• Subset

• Sample

• Training

• Inference

• Transfer

uReverse



How to Understand Machine Learning

Learning is the process of empirical 
risk minimization (ERM)



Learning Mechanism

p Training/Test Error/Accuracy p Prediction Confidence 

Explanation via observation: just plot!

Wang et al. Symmetric Cross Entropy for Robust Learning with Noisy Labels, ICCV 2019.



Learning Mechanism

p Parameter dynamics p Gradient dynamics

Explanation via dynamics and information

TRADI: Tracking deep neural network weight distributions, ECCV 2020; Shwartz-Ziv R, Tishby N. Opening the 
black box of deep neural networks via information[J]. arXiv:1703.00810, 2017.



Learning Mechanism

p Decision boundary, learning process visualization

Explanation via dynamics and information

https://distill.pub/2020/grand-tour/ （March 16, 2020）; https://playground.tensorflow.org/

https://distill.pub/2020/grand-tour/


Learning Mechanism

p Data influence/valuation: how a training sample impacts the learning outcome?

Understanding Black-box Predictions via Influence Functions, ICML, 2018; 
Pruthi G, Liu F, Kale S, et al. Estimating training data influence by tracing gradient descent. NeurIPS, 2020.
Data shapley: Equitable valuation of data for machine learning, ICML, 2019.

Influence Function Data Shapley



Influence Function

p How model parameter would change if a sample z is removed from the training set?

Understanding Black-box Predictions via Influence Functions, ICML, 2018; 

目标：

p How model parameter would change if z is upweighted by a small constant 𝜖?

Cook, R. D. and Weisberg, S. Residuals 
and influence in regression. New York: 

Chapman and Hall, 1982

p Removing sample z is equivalent to upweighting it by 𝜖 = − !
"
 

所以：

complexity=O(#samples*#𝜃! + #𝜃")



Training Data Influence

p How model loss on z’ would change if update on a sample z?

Pruthi G, Liu F, Kale S, et al. Estimating training data influence by tracing gradient descent. NeurIPS, 2020

p First-order approximation of the above (assuming one step update is small)?

p Checkpoints store the interim updates

所以：



Understanding the Learned Model

p Loss Landscapep Deep features

t-SNE plot

Maaten et al. Visualizing data using t-SNE. JMLR, 2008.
https://distill.pub/2016/misread-tsne/?_ga=2.135835192.888864733.1531353600-1779571267.1531353600



Understanding the Learned Model

p Class-wise Patternsp Intermediate Layer Activation Map

Activation/Attention Map

Li et al. Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Network, ICLR 2021; Zhao et al. What do deep nets 
learn? class-wise patterns revealed in the input space. arXiv:2101.06898 (2021).

One predictive pattern for each class



What do deep nets learn?

Zhao, Shihao, et al. "What do deep nets learn? class-wise patterns revealed in the input space." arXiv:2101.06898 (2021).

Goal: understanding knowledge 
learned by a model of a 
particular class.

Method: Extract one single 
pattern for one class, then what 
this pattern would be? 

Other considerations: we need 
to do this in pixel space, as they 
are more interpretable



How to Find the Class-wise Pattern

: a canvas image

Patterns extracted on different canvases (red rectangles)



Class-wise Patterns Revealed

Patterns extracted on original, non-robust, robust CIFAR-
10and patterns of adversarially trained models

Predictive power of different sizes of 
patterns



Inference Mechanism

p Class Activation Map (Grad-CAM)p Guided Backpropagation

Selvaraju et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. ICCV 2017.
Springenberg et al. Striving for Simplicity: The All Convolutional Net, ICLR 2015.



Guided Backpropagation

Springenberg et al. Striving for Simplicity: The All Convolutional Net, ICLR 2015. 
https://medium.com/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709

ReLU forward pass

ReLU backward pass

Deconvolution for ReLU

Guided Backpropagation



Class Activation Mapping (CAM)

Zhou et al. Learning Deep Features for Discriminative Localization. CVPR, 2016. 
https://medium.com/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709

GAP: Global Average Pooling



Grad-CAM

B. Zhou, A. Khosla, L. A., A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In CVPR, 
2016; https://medium.com/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709

Grad-CAM is a generalization of CAM

Compute neuron importance:
𝑦!：logits of class c (before softmax)
A"：k-th channel activation map 

Weighted combination of 
activation map, then interpolation:



LIME

p Local Interpretable Model-agnostic Explanations (LIME)

Ribeiro et al. “Why should i trust you?” Explaining the predictions of any classifier.“ SIGKDD, 2016.
https://github.com/marcotcr/lime

𝜋#：local neighborhood of 𝑥
𝑧：sampled neighbor points
𝑔：explainer e.g a linear model
𝑧′：a binary vector for interpretable 
representation(e.g. patch)



Integrated Gradients

Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks, ICML, 2017. 
https://github.com/TianhongDai/integrated-gradient-pytorch

• There is a path: 𝑥$ 	→ 𝑥$%

• Traverse the path using 𝜶

• Integrate the gradients along the way



Cognitive Distillation

Huang et al. Distilling Cognitive Backdoor Patterns within an Image, ICLR 2023

• Mask extract by cognitive distillation 



Useful and non-useful features

33

• Useful features: 
Ø highly correlated with the true label in expectation, so

o If removed, prediction change
o Backdoor trigger is a useful feature

• Non-useful features: 
Ø not correlated with prediction

o If removed, prediction does not change

Ilyas, Andrew, et al. "Adversarial examples are not bugs, they are features.” NeurIPS 2019



Cognitive Distillation

34

Objective: distill the minimal essence of useful features
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Cognitive Distillation



Distilled patterns on backdoored samples
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How to Verify Cognitive Patterns are Essential

37

Backdoored 
image

Binarized mask 
{0,1}

Original image

Construct simplified backdoor patterns:



Backdoor Patterns Can Be Made Simpler
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Backdoor Patterns Can Be Made Simpler

Simplified backdoor patterns also work!



L1 Norm Distribution of the Distilled Mask

40



Detect Backdoor Samples

41

• Attacks: 12 backdoor attacks 
• Models : ResNet-18, Pre-Activation ResNet-101, MobileNet v2, VGG-

16, Inception, EfficientNet-b0
• Datasets: CIFAR-10 / GTSRB / ImageNet subset
• Evaluation metric: area under the ROC curve (AUROC)
• Detection baselines:

• Anti-Backdoor Learning (ABL) [2]
• Activation Clustering (AC) [3]
• Frequency [4]
• STRIP [5]
• Spectral Signatures [6]
• CD-L (logits layer) and CD-F (last activation layer)



Superb Detection Performance

42
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CelebA dataset:
• 40 binary facial attributes (gender, bald, and hair 

color)
• Known bias between gender and blond hair

• Apply CD in the same way as backdoor detection
• Select subset of samples with low L1 norm 
• Examine attributes of the subset
• Calculate distribution shift between subset and 

the full dataset

Discover Biases in Facial Recognition Models

Liu, Ziwei, et al. “Deep Learning Face Attributes in the Wild.” ICCV 2015.
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Discover Biases in Facial Recognition Models

Masks distilled for predicting each attribute



Discover Biases in Facial Recognition Models

45



Generalization Mechanism

Convergence Generalization

Deep Learning Theory p Convergence

Convex (Linear model) Nonconvex (DNN) Saddle point

p Generalization

Training time

‘Cat’

Test time

‘Cat’?

Traditional theory: simpler model is better, more data is better



Generalization Theory

https://www.cs.cmu.edu/~ninamf/ML11/lect1117.pdf; https://www.youtube.com/watch?v=zlqQ7VRba2Y

p Components of Generalization Error Bounds

generalization
error 

empirical
error 

hypothesis
class

complexity 

confidence
sample size

RHS: for all terms, the lower the better: 
• small training error
• simpler model class
• more samples 
• less confidence



Generalization Theory

Zhang et al. Understanding deep learning requires rethinking generalization. ICLR 2017.

p Small training error ≠ low generalization error

Zero training error was achieved on purely random labels (meaningless learning)
• 0 training error vs. 0.9 test error



List of Existing Theories

• Rademacher Complexity bounds (Bartlett et al. 2017)

• PAC-Bayes bounds (Dziugaite and Roy 2017)
• Information bottleneck (Tishby and Zaslavsky 2015)
• Neural tangent kernel/Lazy training (Jacot et al. 2018)

• Mean-field analysis (Chizat and Bach 2018)
• Doule Descent (Belkin et al. 2019)

• Entropy SGD (Chaudhari et al. 2019)

https://www.youtube.com/watch?v=zlqQ7VRba2Y

A few interesting questions:
Ø Should we consider the role of data in generalization analysis?
Ø Should representation quality appear in the generalization bound?
Ø Generalization is about math (the function of the model)  or knowledge?



How to visualize generalization?

p Existing approaches
• test error
• Visualization: loss landscape, prediction attribution, etc.
• Training -> test: distribution shift, out-of-distribution analysis
• Noisy labels in test data – questioning data quality and reliable evaluation

p The remaining questions: 
p how generalization happens?
p Math ≠ Knowledge
p Computation = finding patterns or understanding the underlying 

knowledge
p What is the relation of computational generalization to human 

behavior?



Cognitive Mechanism

OpenAI reveals the multimodal neurons in CLIP

https://openai.com/blog/multimodal-neurons/; https://openai.com/blog/clip/



Cognitive Mechanism

Ritter et al. Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study, ICML, 2017

cognitive psychology inspired evaluation of DNNs

shape match = prob means 
shape bias



Cognitive Mechanism

Geirhos, Robert, et al. "Shortcut learning in deep neural networks." Nature Machine Intelligence 2.11 (2020): 665-673.

Deep neural networks solve problems by taking shortcuts



Cognitive Mechanism

Rajalingham, Rishi, et al. “Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-
of-the-art deep artificial neural networks.” Journal of Neuroscience 38.33 (2018): 7255-7269. Rajalingham, Rishi, Kailyn Schmidt, and James J. 
DiCarlo. "Comparison of object recognition behavior in human and monkey." Journal of Neuroscience 35.35 (2015): 12127-12136.

Behavioral Prediction Task: Human vs. Monkey vs. Deep Nets



NLP Knowledge Neurons

• Knowledge extraction/distillation
• Knowledge understanding
• Knowledge update
• Knowledge erasing

Dai, Damai, et al. "Knowledge neurons in pretrained transformers." arXiv:2104.08696 (2021).

Common belief: 
The FFN of a Transformer stores knowledge



FudanNLP TextFlint

https://distill.pub/2018/building-blocks/ 

https://distill.pub/2018/building-blocks/


FudanNLP TextFlint

https://textflint.github.io/; https://github.com/textflint/textflint 

https://textflint.github.io/
https://github.com/textflint/textflint


What is Missing

Many theoretical work or interpretation tools have been proposed

Yet, we don’t have an all-in-one system to explain everything.



AI治理开放平台+攻击检测工具集

p 与浦江实验室和清华大学共同发布“蒲公英”人工智能治理开放平台，积极
应对AI鲁棒性问题和全球治理挑战

2022年世界人工智能大会
科学前沿全体会议公开发布

http://www.openeglab.org.cn



开放可信AI社区 (OpenTAI)

https://opentai.org/



攻击展示

系统分析展示AI可信与安全性问题：

• 3种媒体：图像、视频、文本

• 9大任务：图像分类、医学图像分析、人脸识别、
视频分类、深伪检测、命名实体识别、情感倾向
分析、语义匹配、阅读理解

• 36个模型：ResNet、Transformer等

• 6大维度：性能、安全性、鲁棒性、可解释性、
隐私性、公平性

https://opentai.org/



举例 – 图像分类

https://opentai.org/



举例 – 图像分类

https://opentai.org/



举例 – 人脸识别

https://opentai.org/



举例 – 深度伪造检测

https://opentai.org/



举例 – 命名实体识别

https://opentai.org/



举例 – 阅读理解

https://opentai.org/



举例 – 模型逆向/数据窃取

https://opentai.org/



评估评测

模型鲁棒性评测：

• 2种媒体：图像、文本

• 6种任务：图像分类、医学图像分析、
命名实体识别、情感倾向分析、语
义匹配、阅读理解

• 20个模型：ResNet、Transformer
等

• 6大维度：性能、安全性、鲁棒性、
可解释性、隐私性、公平性

https://opentai.org/



举例 – 医学图像分类模型

https://opentai.org/



A little bit more on: Common Robustness

p Texture bias

p Robustness to common corruptions 



Texture bias

Geirhos, Robert, et al. "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves 
accuracy and robustness." ICLR, 2019.

Human

Temporary solution: Data Augmentation (Style Transfer) 
ImageNet -> Stylized-ImageNet

DNNs



Common Corruptions

Hendrycks&Dietterich. “Benchmarking Neural Network Robustness to Common Corruptions and Perturbations.” ICLR, 2019.

ImageNet-C:
p 15 types of noise
p 5 severity levels

ImageNet-P:
p 10 types of perturbation

Current solution: Data augmentation vs. Adversarial Training



谢谢！


